Excuse me, my what?!

Duh, Kineosphaeram, one of the over 600 bacterial species that may be living in your mouth or other areas of your body. If you don’t harbor Kineosphaeram, then perhaps your mouth is home to Bergeriella, Buttiauxella, Cedecea, Derxia, Faecalibacterium, Hallella, Mannheimia, Paludibacterm, Ruminococcus, Thermovirga, or Wolinella. The list goes on….

Looks like a few bacteria have visited this mouth.

If these bacterial species sound new to you, it’s because many of them are. Several of the species were just recently named after researchers led by Dr. Mark Stoneking of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany conducted the first in-depth study of global diversity in the human mouth.[1] The team sequenced and analyzed variations in the bacterial gene encoding 16S rRNA, a component of the bacterial ribosome, in the salivary metagenome (bacterial population) of 120 healthy subjects from six geographic areas. The researchers proceeded to compare the sequences they found with a database of previously categorized 16S rRNA sequences to categorize the types of bacteria present.

These sequences could be assigned to 101 known bacterial genera, of which 39 were not previously reported from the human oral cavity; phylogenetic analysis suggests that an additional 64 unknown genera are present. The results suggest great diversity in the salivary microbiome within and between individuals that until this point had never been realized.

“The healthy human mouth is home to a tremendous variety of microbes including viruses, fungi, protozoa and bacteria,” said Professor William Wade from King’s College London Dental Institute. “The bacteria are the most numerous: there are 100 million in every millilitre of saliva and more than 600 different species in the mouth. Around half of these have yet to be named and we are trying to describe and name the new species.”

Are these bacteria helpful or up to no good? While some may not impact dental health, disease causing bacteria in the mouth are rampant – ranging from species that cause the dental plaque that leads to cavities to forms that weaken the gums or cause bad breath. For decades scientists have advised patients to brush their teeth (don’t forget to scrub for a full three minutes!), floss, and often use a variety of mouthwashes to rid the mouth of as many bacteria as possible. There is little worry that such procedures might kill commensal or “helpful” bacteria in the mouth, probably because most dental bacteria are seen as a menace to to salivary and dental health.

Three of the bacteria identified in the “healthy” subjects in Stoneking’s study are certainly not bacteria anyone wants to be carrying around – Neisseria. Treponema neisseria and Yersinia. Treponema and Neisseria can cause gonorrhea and syphilis respectively. Infection with Yersinia leads to a variety of symptoms including fever, abdominal pain, and diarrhea, which is often bloody. It has also been implicated in Reactive Arthritis.

At my last appointment, my dentist showed me an awesome video of biofilm (bacterial colonies) on the surface of normal teeth. The images were so cool that I asked him for permission to put the video up on this site, but, alas, it is copyrighted. My dentist proceeded to laud the virtues of regular flossing, a practice which I do regularly. (I swear!) In his opinion, flossing helps break up these biofilms and is critical to preventing tooth decay.

Interestingly, the Marshall Protocol does just that – although it uses pulsed, low-dose antibiotics – which have been shown to effectively destroy biofilms – and Benicar to get the job done with more vigor than a flossing addict could ever achieve. Take a certain MP patient (to protect her anonymity, I will call her “Mom”), who has been seeing the dentist for years due to tooth decay. I am told there is a ski home somewhere in Vail funded in large part by “Mom’s” regular dental work. She started the MP two years ago and now her dentist is more than a little surprised. At her last appointment, he said that he simply could not fathom the lack of plaque or tooth decay in any area of her mouth. Boy, does “Mom” wish she had started the MP earlier!

What intrigues me about bacteria in the mouth is that scientists regard most of them as harmful to our health and have no problem with procedures that would seek to sterilize the mouth. But when one mentions other parts of the body – let’s say the gut – and points out that perhaps the majority of bacteria in that area are also causing inflammation and disease, the same researchers often strongly disagree. Currently bacteria in the gut are largely assumed to be “helpful”, although in many cases such thinking is based only on speculation. Perhaps some gut bacteria may help with metabolic breakdown, but it is quite possible that the environment in the gut more closely resembles that of the mouth – an environment that can easily be overtaken by pathogens. Under such circumstances, a treatment like the MP that kills bacteria in the gut is therapeutic against inflammatory diseases such as Crohn’s, colitis and myriad other bowel ailments. This is especially true since patients on the MP are reporting improvement and recovery from bowel diseases that have never previously been reversed.

Also interesting is that many bacteria in the mouth seem able to migrate down the esophagus and reach the interior organs of the body. For example, Porphyromonas gingivalis[2] and A. actinomycetemcomitans,[3] both of which cause decay in the mouth, have been repeatedly identified in artherosclerotic plaque. This strongly suggests that these bacteria may be wreaking havoc on the blood vessels and contributing to heart disease. In fact, biomedical research Trevor Marshall believes that arterial plaque is a result of chronic bacterial infection. Indeed, where arterial plaque was once thought to be made of cholesterol and lipids it is now known that it is largely composed of dead macrophages. Since bacteria can infect and kill macrophages the death of such cells and their accumulation in patients with heart conditions seems logically tied to bacterial infection. With the above in mind, it’s not surprising that patients on the MP have reported improvement and recovery from various cardiac conditions. Some have tests showing that after years on the MP the plaque in their arteries is greatly reduced.

So keep on brushing people, but I recommend doing the MP too. In a theoretical sense the MP “brushes” our insides – the places we can’t reach to kill pathogenic bacteria physically. For most MP patients doing so is proving to be quite rewarding.


  1. Nasidze, I., Li, J., Quinque, D., Tang, K., & Stoneking, M. (2009). Global diversity in the human salivary microbiome. Genome Research. []
  2. Dorn, B. R., Dunn, W. A., & Progulske-Fox, A. (2001). Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infection and Immunity, 69(9), 5698-708. []
  3. Kozarov, E. V., Dorn, B. R., Shelburne, C. E., Dunn, W. A., & Progulske-Fox, A. (2005). Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(3), e17-8. []